Graphical and Mathematical Analysis of the Reversible Inhibition of Enzyme Kinetics

Graphical Formats Michaelis-Menten Rectangular
Hyperbolic Plot
Lineweaver-Burke Double-Reciprocal Plot 
Y vs. X Empirical Variables Vo vs. [S]o 1/Vo vs. 1/[S]o
Functional Relationships
Y = f(X)
V0 = (Vmaxapp)*[S]0h

[S]0h+ (KMapp)h
1/V0 = (1/[S]0h)*(KMapp)h/(Vmaxapp) + 1/Vmaxapp

Graphical formats: Eisenthal-Cornish-Bowden Direct Linear Plot Scatchard Plot
Y vs. X Empirical Variables Vo vs. -[S]o
Vmaxapp & KMapp are pseudo-variables.
r/[S]0 vs. r
where r = n*(V0/Vmaxapp)
Functional Relationships
Y = f(X)
Vmaxapp= (V0/[S]0h)*(KMapp)h + V0  r/[S]0 = ([S]0h-1/(KMapp)h)*(n-r)

Graphical Formats Hill Plot
Y vs. X empirical plots log (V0/Vmaxapp-V0) vs. log [S]0
Functional Relationships
Y = f(X)
log (V0/(Vmaxapp-V0)) = log ([S]0/KMapp)h = h*log ([S]0/KMapp)

Constants and Definitions
KMapp = [S]50% @ V0 = Vmaxapp/2 h = Hill coefficient,
h = 1 for Michaelis-Menten Kinetics
n = # of identical catalytic sites per E molecule.
r = average # of S molecules converted to P molecules per enzyme. molecule per unit time.
Competitive Inhibition Uncompetitive Inhibition Mixed Inhibition
Vmaxapp = Vmax - unchanged
K
Mapp = a*KM where a = (1 + [I]/KI)
Vmaxapp = Vmax/a' (mM/sec)
K
Mapp = KM/a where a' = (1 + [I]/KI')
Vmaxapp = Vmax/a' & KMapp = a*KM/a'
where
a = (1 + [I]/KI) & a' = (1 + [I]/KI')
© Duane W. Sears
July 26, 2019