Glycine's Ionization Microstates and pH-Dependent Electrophoresis Reload    

Click to change pH.


Click
to start animation.
;
 

ExampleThe Isoelectric pH, or pI, of Glycine equals 6.1.
Assumptions: pKd(α-NH3+) = 9.8 pKd(α-COOH) = 2.4
Electrophoresis Practice Quiz
4 Possible Microstates
Equilibrium Microstate Fractions at pH = 6.1
(+ -):  NH3+-CH2-COO- At pH = 6.1, fraction = Ya(a-NH3+) * Yd(a-COO-) = 99.96%
(+ 0): NH3+-CH2-COOH At pH = 6.1, fraction = Ya(a-NH3+) * Ya(a-COOH) = 0.02%
(0 -):  NH2-CH2-COO- At pH = 6.1, fraction = Yd(a-NH2) * Yd(a-COO-) = 0.02%
(0 0):  NH2-CH2-COOH At pH = 6.1, fraction = Yd(a-NH2) * Ya(a-COOH) = 0.000004%
@ pI, net charge = 0 and Ya(α-NH3+) = Yd(α-COO-). Thus,Ya(α-NH3+) = 1/(1+10pI-pKdn(NH3+)) = Yd(α-COO-) = 1/(1+10pKdn(COOH)-pI).
(1+10pKdn(COOH)-pI) = (1+10pI-pKdn(NH3+)) or 10pKdn(COOH)-pI = 10pI-pKdn(NH3+) or pKdn(COOH)-pI = pI-pKdn(NH3+).
Thus, 2*pI = pKdn(NH3+) + pKdn(COOH), or pI = (1/2) * (pKdn(NH3+) + pKdn(COOH))
.
© Duane W. Sears and Erin M. Hildebrand, Revised: January 25, 2021