Example: The Isoelectric pH, or pI, of Glycine equals 6.1. |
|
|
Equilibrium
Microstate Fractions at pH = 6.1 |
(+ -):
NH3+-CH2-COO- |
At pH = 6.1, fraction = Ya(a-NH3+) * Yd(a-COO-) = 99.96% |
(+ 0):
NH3+-CH2-COOH |
At pH = 6.1, fraction = Ya(a-NH3+) * Ya(a-COOH) = 0.02% |
(0 -):
NH2-CH2-COO- |
At pH = 6.1, fraction = Yd(a-NH2) * Yd(a-COO-) = 0.02% |
(0 0):
NH2-CH2-COOH |
At pH = 6.1, fraction = Yd(a-NH2) * Ya(a-COOH) = 0.000004% |
@ pI, net
charge = 0 and Ya(α-NH3+) = Yd(α-COO-).
Thus,Ya(α-NH3+) = 1/(1+10pI-pKdn(NH3+)) = Yd(α-COO-) = 1/(1+10pKdn(COOH)-pI).
(1+10pKdn(COOH)-pI) = (1+10pI-pKdn(NH3+)) or
10pKdn(COOH)-pI = 10pI-pKdn(NH3+) or pKdn(COOH)-pI = pI-pKdn(NH3+).
Thus, 2*pI = pKdn(NH3+) + pKdn(COOH), or pI = (1/2) * (pKdn(NH3+) + pKdn(COOH)). |
|